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Abstract. A deformation approach resolves problems concerning the ordering of 
operators and the commutation of quantization with canonical transformation. This 
completes the programme of Robnik to develop a purely algebraic method for the 
quantization of non-integrable Hamiltonian systems about a point of stable equilib- 
rium. 

1. Introduction 

The aim of this work is to provide a quantum analogue for the method of normal 
forms. Almost all Hamiltonian systems are non-integrable. I t  is a general feature 
of non-integrable systems, however, that  a t  energies in the neighbourhood of a sta- 
ble equilibrium, they possess many of the properties which characterize integrable 
ones. They behave regularly, and trajectories are confined to lie on ‘invariant tori’, 
n-dimensional surfaces in the 2n-dimensional phase space. The  presence of such tori 
suggests the existence of approximate integrals of the motion. As the energy of a sys- 
tem is increased, the surfaces confining the trajectories distort. Associated with this 
distortion are period-doubling phenomena and bifurcations in the Poincard surfaces of 
section. The  distorted tori eventually break up into ‘cantori’, complicated structures 
like Cantor sets, where the trajectories are divided into islands, or families of tra- 
jectories, alternately describing chaotic and regular motion. As the energy is further 
increased the  space occupied by the irregular trajectories grows in volume until a t  
a certain critical energy all motions become chaotic. The  trajectories are no longer 
confined to n-dimensional tori but wander to  fill the whole energy surface. This is one 
of the well known routes to  chaos [l] and has been extensively studied numerically. 
The  method of normal forms was developed by Birkhoff to predict the presence of 
invariant tori (approximate integrals of the motion), the bifurcation of tori and the 
general behaviour of classical systems in the sub-critical energy regime. 

The  Hamiltonian is expanded as a Taylor series about the point of stable equilib- 
rium. The  lowest-order terms resemble a series of uncoupled harmonic oscillators. The  
idea is to transform the Hamiltonian by a series of canonical tansformations, so that 
to progressively higher orders, H commutes w i t h  the harmonic terms in the lowest 
order. The  harmonic part ,  that  which commutes with the lowest-order component of 
H ,  constitutes an integrable, low-energy effective model for the original system. By 
including higher-order harmonic components we get a system which is still integrable, 
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is somehow close to the original non-integrable system and (it is expected) models the 
behaviour of the original system as long as the islands of regular motion persist. 

I t  became apparent that  the method of normal forms would provide a quick and 
easy approach to  the quantization of non-integrable or non-separable sysytems. The 
value of such an approach is not so much in calculating spectra (there are other 
methods), but in providing an  effective integrable model which accurately reproduces 
the features of the non-integrable system in the sub-critical energy regime, and which 
enables one to understand the quantum mechanics of a classically chaotic system in 
terms of approximate quantum numbers and approximate conservation laws. This 
method has had applications in the study of the vibrational energy flow in molecules 
[2-41, laser-induced multiphoton photodissociation in molecules [5], and in the study 
of the quadratic Zeeman effect for the hydrogen atom in a strong magnetic field [6.7]. 

The  method of normal forms has also had a role to play in the search for, and 
investigation of quantum chaos. Indeed this has been one of the big industries of 
modern physics: for a recent review of current problems see Elyutin [8]. One approach 
in the search for a characterization of quant,um chaos is based on the behaviour of 
the invariant tori breaking up to signal the onset of chaos. The  method of normal 
forins is essentially a torus quantization, the naive expectation was therefore tha t  the 
method should be accurate as long as t,liese tori persist, breaking down thereafter [9]. 
This approach was adopted by Swimm and Delos [lo] to carry out the quantization 
of certain non-integrable Hamiltonian systems about, a point of st,able equilibrium. 
Very good results were obtained in many cases giving better results than ordinary 
perturbation theory [lo].  However the espected failure of the method does not seem to 
occur. Calculations for the H6non-Heiles system revealed that t,he method gives good 
results well into the chaot,ic regime. and even beyond the dissocation energy [ lo ,  111. 
I n  the resonant case, their met,liod involved nunierically computing the actions $pdy,  
obtained by integrating around various orbits in  phase space. Robnik improved on this 
situation by developing a fully algebraic method of quantization [O]. This cut out the 
need for numerical integrat,ions and moved away from the use of torus quantization. 
His method however relied on a number of working assumptions. It was assumed: 

(1) that  the polynomials arising i n  t,he classical expression for the normal form 
represent Weyl-ordered operators; 

( 2 )  tha t  the transformed quantum canonical coordinates q’ and p ’ ,  satisfy the same 
fundamental bracket, relations as their predecessors q ~ p ;  and 

( 3 )  that  a generalization of the squaring axiom holds. For example if ww is IYeyI- 
ordering. then it is taken (wrongly of course [9, 121) that the following is true: 

The  central issues here are the commutat,ioii of quantization with canonical trans- 
formation ( C T ) ,  and the need for a n  efficient, formalism to  deal with the ordering of 
complicated polynomial expressions i n  the IIeisenberg-\Veyl algebra. RIost classical 
CTs are local and they do not extend t.o global changes of variables. For instance 
the transformation from Cartesian to polar coordinates is not one-to-one invertible, 
but changes the topology of the configuration space. This raises issues relating to the 
existence and uniqueness of represent at  ions of the Heisenberg-\Veyl algebra. The  only 
classical CTs which d o  coinmute with quantization are those which are continuously 
connected to the identity. These are infinitesimally generated. and their quaiituin 
analogues are the unitary transform;ltions-obtained by the complex exponentiatioii 
of self-adjoint opera tors. 
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Independent work by Eckhardt [13], and by Ali [14], demonstrates tha t  in the 
classical method of normal forms, the construction of canonical transformations using 
generating functions, can be replaced by an approach using Lie transforms. Within 
this framework they replace the Lie brackets, with the commutators of the quantum 
algebra, to produce a quantum method of normal forms very similar to our own. 
They point out tha t  this is probably equivalent to Rayleigh-Schrodinger perturbation 
theory, and Ali gives an  argument as to why this should be so. However the questions 
concerning the ordering of operators, and a method of normal forms which commutes 
with the quantization process remain unsolved. The  problem of understanding the 
relationship between classical and quantum integrable systems has been looked a t  by 
Hietarinta [15]. 

We resolve the problems concerning the commutation of quantization and CT on 
?Xd by quantizing in the frame in which the system is understood, and by working 
thereafter in terms of quantum CTs. We resolve the problem of handling complicated 
expressions in the Heisenberg-Weyl ring by using the formalism which we present in 
the next section. 

2. Tools and terminology 

The  quantization of a classical Hamiltonian system can be thought of as the process 
by which the classical algebra of observables is replaced with the quantum algebra 
of observables. The  Poisson bracket acting on functions of phase space is replaced 
with the commutator algebra of operators acting on functions of configuration space. 
Quantization can be studied as a deformat,ion of the classical algebra of observables. 
For an introduction to the philosophy of the deformation approach and an overview 
of its possible scope see Flato [16]. The theory of the deformations of Lie algebras has 
drawn from the work of Moyal [17], Agarwaal and Wolf [18], Vey [19], Lichnerowicz 
[20], Gerstenhaber [all ,  Bayen e t  a1 [22], and more recently by Dunne [23]. This 
approach provides an insightful reformulation of quantum mechanics i n  which the 
Heisenberg-Weyl algebra is recognized to  be the unique non-trivial deformation of the 
classical algebra of observables on !J2d, in which the observables are those of classical 
mechanics, and the energy is quantized as i n  quantum theory. An adaptation of the 
formalism summarized by Niederle [24] provides an ideal tool with which to develop 
the quantum analogue of the method of normal forms. 

In associating a quantum observable with some classical observable, ordering prob- 
lems may arise [25]. When they do the only distinguished choice of ordering is \\'eyl- 
ordering. This is distinguished by the fact that  it commutes quant,izat,ion wit,h linear 
CTs. Otherwise we are free to associate with a classical observable, any quantum 
operator with the same dimension and a non-singular limit as h - 0. 

Let O ( q , p )  be the space of classical polynomial observables. Oh(qT y .  h )  is the space 
of extended classical polynomial observables. In this case the algebra is classical, but 
the functions are allowed a formal dependence on t L .  is the Heisenberg-Weyl ring, 
the space of quantum polynomial observables in  which the q ,  p ,  f i  obey the following 
fundamental bracket relations: 
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Quantization is a mapping from O,(q, p ,  h )  to w ,  This is not an algebraic isomor- 
phism, it is a re-interpretation of the symbols in O , ( q , p ,  h )  as Weyl-ordered operators. 
Since every polynomial operator can be expressed as a sum of Weyl-ordered opera- 
tors, the ordering problem is that of choosing an embedding of O ( q , p )  in O,(q ,p ,  h ) ,  
and quantization is the natural association of each symbol in O,(q, p ,  h )  with a Weyl- 
ordered operator in w. It is convenient to represent the elements of by their 
symbols in O,(q ,p ,  h )  instead of complicated expressions involving orderings of oper- 
ators. 

W' is the envelope of all monomials pip' hk where li(+ ljl+2k = s,  and i, j, k >_ 0. 
The i , j  are vectors of dimension d ,  the dimension of configuration space. lil stands 
for i, + . . . + id. This provides a partition of the Heisenberg-Weyl ring w, as follows 

- 

The monomials q'9 hk are the quantum analogues of monomials which figure in the 
classical method of normal forms, q'pl where i + j = s [ lo ,  261. 

It is generally appreciated that the product of two Weyl symbols is not the Weyl 
symbol of the product, but  the Weyl symbol of the Moyal product 1171. The Moyal 
product of two operators f, g is denoted f * g,  and maps w x w + w, and is given 
by 

It is assumed that ,  having calculated such an expression ( l ) ,  the substitutions q1 = 
qz = q,  and p ,  = p a  = p are made. Similarly the Weyl symbol for the commutator of 
two Weyl symbols is not the Poisson bracket, but the Moyal bracket of the symbols 
[17]: 

(2) 

We can work exclusively in terms of the Weyl symbols without the need to re-order 
our expressions at  various stages in each calculation. We will find it desirable to  
express Weyl-ordered symbols in terms of objects representing operators in some other 
ordering, for example standard-ordering. Given a symbol W ,  representing an operator 
in some ordering i, the symbol which represents the same operator but i n  a different 
ordering j ,  can be calculat.ed from the original one by applying a deformation 4 to  IV. 
There is no confusion as long as one remembers which ordering the symbols represent. 
The set of all 4 form a group and we will have occasion to use these in section 4 .2 .  
With this machinery a t  our disposal we are now ready to look at  the met,hod. 

3. The method 

A Hamiltonian system is represented by the Taylor expansion of the Hamiltonian 
function about a point of stable equilibrium. In this form H = H', where 
H' E w', and H 2  = z k = 2 W k T k .  The Tk are harmonic oscillator terms ( p :  + q z ) / 2 .  
We say that H is harmonic to order n ,  if H k  E K ( H 2 )  V k 5 n ,  where I\'(H2) is 



The Birkhoff-Gustavson method of normal forms 5819 

defined by the property [X, H 2 ]  = 0 for all X E Z<(H2).  Hamiltonians in which the 
lowest-order terms are harmonic oscillators, and in which higher terms are harmonic 
to  order n,  are said to  be in ‘normal form’ to  that order [26]. 

We will now describe a way for generating transformations of the Hamiltonian H ,  
so that the new Hamiltonian H’ is in normal form to successively higher orders. We 
assume that H” E I i ‘ ( H 2 )  for i = 1 , .  . . , s - 1 and look for a unitary transformation 
which transforms H into H’, so that H” E K ( H 2 )  for i = 1 , .  . . , s. Take W’ E m’~ 
and H’ as follows 

H’ = exp(iW’/h)H exp(-iW’/h) 

The transformed Hamiltonian can be written in the form 

H’ = H’2  + H f 3  + . . . + H” + . . . H” E w‘ V t .  

Notice that if W’ E w’ and H i  E $’, then 

n-times - 
V i ,  s,  n. 

On inspection we find that 
order s - 1. The term of order s is given by 

= Hi for i = 2 , .  . . , s - 1. That  is H is unaltered to 

and the general term, by the following formula 

1-times 

Choosing W’ so that H’’ E I < ( H 2 ) ,  we ensure that H’ is in normal form to order s. 
The existence of a solution is guaranteed by construction; however it is far from being 
unique. Given one solution W’ any element of LY’ @ ( Z < ( H 2 )  nm’) is also a solution. 
The simplest and most convenient choice is W S  E 111(H2)” 

Before we can construct the solution, we need to elucidate the structure of l i (H2) .  
Assume that CP E 1 < ( H 2 ) .  From (2)  we have that 

= 0. 
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Therefore @ must satisfy C k  W k ( P k a q k  - q k a p k ) @  = 0. To find all solutions of this we 
go to the coordinate representation defined by 

In this representation, 4 E K ( H 2 )  if and only if C k & d k ( e k d , ,  - n k a n k ) @  = 0. Taking 
@ = e' nm (shorthand for e t  . . . e k n y l  . . . n z n ) ,  this becomes, Ck w k ( 1 k  - m k ) @  = 0, 
and (p = elnm lies in Ii ' (H2) if and only if 

k 

To complete the calculation, W s  and H s  are expressed in the form 

Equation (3) for HIs becomes 

The  coefficients &lmk are known, but the p l m k  are determined so t.hat HIs E K ( H 2 ) .  
This is achieved by choosing P I m k  as follows 

It  does not matter what we choose when U . ( 1  - m) = 0. The  choice W s  E K ( H 2 ) ' >  
given by 

P l m k  = when w . ( 1  - in) = 0 (8) 

is optimal in tha t  it cuts down on calculations by having as many terms as possible 
equal to zero. From (7 )  and (8),  W s  can be found, and the new Hamiltonian calculated. 
H' is in normal form to degree s, and the whole procedure can be repeated to transform 
H to normal form to as high a degree as required. 

The  polynomials Wi are Hermitian operators. The  complex exponentiation of an 
Hermitian operator gives an  isometry which is Hermitian. The  it." always have self- 
adjoint extensions (271 which provide unitary transformations of the IIilbert space. 
The  difference between different extensions is not manifest in the spectrum of the 
truncated normal form. This is not where the story ends however. Each term arising 
in the resulting normal form represents a Weyl-ordered partial differential operator. 
we must now address. 
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4. The spectral problem 

Hamiltonians about points of stable local equilibrium fall into one of two categories. 
They are distinguished by whether or not w k ,  the fundamental frequencies, satisfy the 
following condition of commensurability: 

V k  3ak E 2 such that some ak # 0 and f: akuk = 0. (9) 
k=O 

Those which do are referred to  as 'resonant' Hamiltonians, and those which do not are 
referred to  as 'non-resonant'. Geometrically, an orbit of an integrable non-resonant 
Hamiltonian systems fills out the n-dimensional invariant torus on which it lies. In 
the resonant case, however, a single orbit is confined to  a lower dimensional subset of 
this torus. From an algebraic point of view, the only monomials el1 . . . eldnm1 . , . rind 
which lie in K ( H 2 )  occur for 1, = m,t/k. In this case Ii'(H2) is composed of arbitrary 
functions of T I ,  . . . , Td,  the harmonic oscillators. In particular if H is in normal form 
to order t then H h ,  the normal part of H is given by 

The eigenfunctions of the T, are given by $; and satisfy: 

Tk$! = h ( n k  + f)s; n k = 0 , 1 , 2  . . . .  (11) 

Birkhoff and Gustavson [26], made the assumption that given $ z k , T k  satisfying (11), 
the wavefunctions of H h  are provided by 

Qnl  n d  = $7' . . . $ i d  ( 1 2 )  

where n l , .  . . nd E Zt, and that the spectral problem is resolved as follows 

H h ( T l  1 ' ' ' 9 T d ) Q n l  r i d  = Hh[h(nl + f ) i . .  h(nd $ ) I Q n ,  n d '  (13) 

However this is not true. This was a valid working assumption in the context of 
the semi classical method because it was not known how to order the complicated 
expressions which arose. We now look a t  how to overcome the problem presented by 
the failure of (13) to hold. 

4.1. Non-resonant Hamzltonzans 

Since each group of variables q L , p l ,  or equivalently e , ,  n , ,  commutes with each other 
group, we need only consider the problem of the spectrum of TL for arbitrary b \\'e 
therefore drop the subscript and start by looking at what happens to T 1 .  

While it is not true that 

T k g n  = [ h ( n  + +)lkvn 

it is true that 
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The  notation (*T)k is shorthand for the Moyal product of T k-times. We need to 
express T k  in terms of the products ( * T ) k .  Repeatedly applying the rule for the 
Moyal product of two factors A ,  * A, ( l ) ,  we get the rule for the Moyal product of 
m factors. This is given by the following deformation of the corresponding classical 
product. 

where i, j E { 1 , .  . . , m} and 

A X = + 1  i > j  

= O  i =  j 

=-1  i < j .  

It  is assumed that after evaluation of the expression we set each ei = e ,  and each 
ni = n. Taking d = 1 and setting each Ai(e, n )  = eini V i = 1 , .  . . , m, the identity 
(14) becomes 

Now replace everything in terms of the harmonic oscillator T, = ieini t.o get 

t 

= ( -h2/4)k.4k 
k = O  

where A, is the number of ways of choosing b pairs from among 171 objects, and  t is 
the integer part of m / 2 .  We eventually see that 

t k ?2! 

(+T)" = XTn-?' (-h2/S) ( n  - 2 k ) !  
k = O  

( 1 5 )  
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which is most conveniently wri t ten as Collows 

We can now express the Weyl symbol of the product of m FVeyl symbols of har- 
monic oscillators, in terms of the Weyl symbol of the product of m harmonic oscillators. 
However we cannot use this directly to complete the calculation of the spectrum. The  
identity (16) must be inverted to give Tm in terms of ( * T ) k .  Starting with 

t 

Tm = C ~ r , ( * T ) " - ~ ~ ( - h ' / 8 ) ~  
g=o 

where the as are constants to be determined, and replacing each (*T)k  using (15), we 
find tha t  after a little rearrangement 

T h e  solutions cyg are given by 

CYg = 1 g = o  

= -m(m - 1) g = l  

= o  g > 1 .  

The  inverse of (16) is, therefore, 

( * T ) m - W  
m(m - 1) 

8 
Tm = (*T)" - 

or , alternatively, 

We have just  established tha t ,  in the case of non-resonant Hamiltonians, the wave- 
functions of H ,  are given by (12 ) ,  and that the spectrum is given not by (13), but by 
the following deformation of (13): 

where each Tk = h(nk + i), and nk E 2+. To illustrate this the spectrum of T? is 
given, not by [h(n  + $ ) I 2 ,  but by [ h 2 ( n  + $ ) 2  - h2/ /4 ] .  
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4.2. Resonant Hamiltonians 

In this case ] < ( I f 2 )  contains extra terms of the form e A T k ,  n A T k .  The  wavefunctions 
in (12) are no longer wavefunctions for T h .  Nevertheless the corresponding operators 
can always be diagonalized within the N-eigenspace defined by the span of Q n l  n d  

where n k  satisfy 

d 

k = O  

Each N-eigenspace is finite, and so the diagonalization means manipulating only finite 
matrices. Once more a problem arises as regards finding the spectrum of H ,  from the 
spectrum of the  Tk. The  extra terms are of course Weyl-ordered and it is desirable to 
express these in the form e" *(*T)k ,  and n" * ( * T ) k .  In this case we can use identities 
such as 

e A  * (*TI'$" = e" [hw (n + +)I' +n = [hw (n + + ) l k  eA4n (19) 

t o  make diagonalization in the N-eigenspaces as painless as possible. We outline the 
calculation for e A T m ;  the calculation for n A T m  is almost identical. 

In the e , n  representation, the commutation relations are provided by [e,n] = h 
etc. The  term 'standard ordering' means an ordering of the operators in which the e 
factors lie t o  the left of the n factors. I n  this case the operations which map Weyl- 
ordered symbols onto the corresponding standard-ordered symbols, and iuce  versa, are 
provided respectively by 

It  can be shown that for arbitrary Weyl symbols g(e, n )  

g(e, n) = eA * [ u ~ ~ e - A u ~ & g ( e ,  n)] . 

In particular we look at the case where g(e, n )  = e A T k  = eAtknkik .  We find that 

e A ~ k  = e A  [,W,-A s t  6 + k  k ' k  
st  uwe n 1 I 

Since T = ien we can replace e-'& with iaT to get 

(21) 

eATk = eA * [ (1 + i;aT)-" Tk] . ( 2 2 )  
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A similar calculation reveals that 

nATk  = n-A * (1 - i laT) h - A  Tk. 

As an example of how this might be used, note that eT2 = e * T2 + ihe * 7 
From (11) and (18) we see that 

e P $ ,  = [h2(n  + $1’ + ih2(n + $1 - %h2]  e$,,. 

5.  Examples 

5825 

(23)  

h 2 / 2 e .  

The harmonic part of the quantum Hamiltonian is used to approximate the original 
system. It is a perfectly good integrable system in itself and in some sense represents 
the behaviour of the non-integrable system for a certain range of energies. To illustrate 
what we have done we look at the case of a well known and well studied non-integrable 
system, the Henon-Heiles system [28]. This is represented by the following four- 
parameter set of Hamiltonians. 

5.1. The non-resonant case 

The general form of the normal form for a non-resonant Hamiltonian with two degrees 
of freedom is as follows: 

H = H 2  + H4 + H 6 + .  . . 
where 

2(i+j+k)=n 

Immediately we see that gloo = m l ,  golo = m2,  the coefficients of the harmonic 
oscillator terms. The gijk are all real numbers determined by the method outlined in 
section 3. The gijo coincide exactly with those obtained by the classical method. To 
order six only three new terms arise, gO02, g102 and gOl2.  The spectrum of the normal 
truncated Hamiltonian can be calculated according to (18) for the non-resonant case: 

Enln2 = hE,!,,,, + h2E:ln2 + h3Eiln2 + . . . ( 2 5 )  
where 

E,!,ln2 = mi (721 + 3) + 1712 (122 + f )  

Enln:! = ~ 2 0 0  ( n l +  $1 + gllo ( n 1 +  3) (n2 + 4) + 9020 (‘2 + $1’ 2 2 

1 t  + (9002 - a9200 - 49020) 
3 1 3  

Enln?  = g300 (nl + 5 )  + g210 (n l  + 4)’ ( n 2  + f )  
+ 9120 (n l  + f )  ( n 2  + f)’  + 9030 ( n 2  + f l 3  
-k (9102 - $9300 - 491?0) ( n l  + f)’ 
+ (9012 - !go30 - ag?lO) ( n 2  -k i)’ ’ 

1 
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The daggers indicate those terms which are new. 
We now turn to the case of a non-resonant Hdnon-Heiles system. In table 1 we 

compare the results for ml  = 1.3, m2 = 0.7 and X = -0.1, 7 = 0.1, using our  
method, with the exact results of Noid which were reported by Swimm and Delos 
in [lo]. The  results are accurate to within less than 1%. The  normal form for the 
energies is an  asymptotic expansion, this feature is identifiable in  the progression from 
the second-order t o  the eighth-order calculations for the energy. The  best results are 
obtained using the sixth-order approximation for the Hamiltonian. I t  is with these 
values we calculate the relative error. The  normal form for the Hamilt,onian is given 
by H ,  = H 2  + H4 + H 6  + Ha where 

H 2  = 1.3T, + 0.7T2 

H4 = -0.00686375Tf - O.OO843244T1T1 - 0.00053571Tl+ 0.00199669h2 

H 6  = -0.00009548T; - 0.00022941T,?T2 - O.O0012OilT,T,2 - 0.00000l28T~ 

+ 0.00012994T1h2 + 0.00008148T2h2 

Ha = - 0 . 0 0 0 0 0 1 6 4 ~  + 0 . 0 0 0 0 0 6 5 6 ~ T 2  - 0 . 0 0 0 0 0 7 3 5 T ~ T ~  - O.O0000015T,T~ 

- 0.0000000T~ - 0.0000018T~h2 + 0.00001284T1T2h2 + 0.00000141T~h' 

- 0.00000015h4 

Table 1. 

q-numbers Order of normal form Exact ?4 re1 error 

"1 n2 2nd 4 th  6 t h  8th 

0 0 0.1 
0 1 1.7 
1 0 2.3 
0 2 2.4 
1 1 3.0 
0 3 3.1 
2 0 3.6 
1 2 3.7 
2 1 4.4 
3 0 4.9 

0.9961 
1.6909 
2.2782 
2.3845 
2.9645 
3.0771 
3.5465 
3.6497 
4.2244 
4.801 1 

0.9960 
1.6905 
2.2774 
2.3839 
2.9628 
3.0761 
3.5441 
3.6469 
4.2200 
4.7953 

0.9961 
1.6907 
2.2776 
2.3841 
2.9630 
3.0762 
3.5442 
3.6470 
4.2201 
4.7953 

0.9955 
1.6870 
2.2781 
2.3750 
2.9584 
3.0596 
3.5479 
3.6347 
4.2162 
4.8043 

-0.05 
-0.23 
-0.004 
-0.38 
-0.15 
-0.54 
t0.11 
-0.34 
-0.09 
$0.19 

5.2. The resonant case 

In the resonant case more terms arise of the form ICn + I<*n. For example if 771, = 
m2 = 1, we have 

IC = i e ln2  IC' = ie,nl 

and the normal form is given by H = H 2  + H4 + H 6  + ' '  ., where this t'iine 

2 ( i + j + k + l ) = n  
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To order six, four terms arise which were not present in the classical method. These 
are the coefficients goOo2, gOol2,  gOlo2 and glOo2. We now turn to the case of a resonant 
Hknon-Heiles Hamiltonian taking ml = m2 = 1, X = 1/10, and 77 = -1/3. In table 2 
our calculations of the spectrum are compared with the exact results as calculated by 
Robnik [9], and the fourth-order normal form calculation done using the old method. 
N(18), is just the sum of the two small q-numbers n1 + n, + 1, and corresponds to  
the sum of the energies of the uncoupled harmonic oscillators in the lowest order. The 
normal form to order eight is given by H = H 2  + H4 + H 6  + H 8  where 

H 2  = Tl + T, 

H4 = -0.00416667T; + 0.00333333T1T2 - 0.00416S67T,” 

- 0.00583333(K2 + I<*’) + 0.00222222h2 

H6 = 0.00002338c - 0.00040625T;?T2 + 0.00029375T1T,2 - 0.0000544T; 

- 0.0001118T1(K2 + + 0.00012153T,(1<2 + 
+ 0.0000412T1fi2 + 0.0000412T2h2 

H 8  = - 0 . 0 0 0 0 0 0 8 6 ~  + 0.00000452T;7T2 - 0.00000334T,2T,2 

+ 0.00000029T1T~ - O.OOOOOO34T,” - 0.00000161T~(1<2 + I<*’) 

+ 0.00000143T1T,(1~2 + 
+ 0.00000183T,2h2 - 0.00000154T1T2h2 + 0.00000183T~h2 

- 0.0000015G(1<4 + 

- 0.0000032T,2(1<2 + 

+ 0.000002G(1<2 + 1<*2)h2 - 0.00000026h4. 

Table 2. 

N Order of normal form Exact Robnik 

2nd 4th 6th 8th 

1 1 0.9989 0.9989 0.9989 0.9989 0.9989 
2 2 1.9922 1.9921 1.9921 1.9921 1.9921 

2 1.9922 1.9921 1.9921 1.9921 1.9921 
3 3 2.9889 2.9884 2.9884 2.9884 2.9888 

3 2.9889 2.9884 2.9884 2.9884 2.9888 
3 2.9655 2.9651 2.9651 2.9651 2.9654 

6. Conclusion 

By carrying out the calculation for the normal form to arbitrary high order we get a n  
infinite series which represents the original system in some way. An important question 
which arises is that  of the convergence of the series. It was demonstrated by Siege1 
[29] that  the classical series has a zero radius of convergence if the original system is 
non-integrable. If it is integrable it will converge for a certain range of the energy. 
This is pefectly reasonable since a non-integrable system cannot be made integrable 
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by a simple change of variables. The normal form expansion for the Hamiltonian is 
itself an integrable system, and its relationship to the original non-integrable one is, 
at best, asymptotic. An analogous situation holds for the quantum method of normal 
forms. The asymptotic nature of the expressions for the energy is particularly evident 
in the first example where the best approximation for the energy levels is given by the 
sixth-order normal form, and the approximation deteriorates as the order increases. 

In the energy calculations we have done, there is little difference between the 
two approaches, the semi classical approach of Robnik [9], and the ‘proper quantum 
analogue’ we have just described. The latter we believe is more transparent and 
conceptually simpler than the classical method of normal forms. The problem of 
‘small divisors’ which arises in the classical approach, and which leads to difficulties 
in the treatment of resonant systems does not arise, and the problems associated with 
the ordering of operators and the commutation of canonical transformations with 
quantization have been resolved. Having constructed the proper quantum analogue 
of the method of normal forms we have effectively completed Robnik’s programme for 
developing a purely algebraic method for the quantization of non-integrable classical 
Hamiltonian systems about a point of stable equilibrium. 
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